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ANALYSIS OF THE WIDE BAND GYROTRON AMPLIFIER

IN A DIELECTRIC LOADED WAVEGUIDE

I. INTRODUCTION

The gyrotronI - 3 is a high power microwave device that makes use of the

Doppler-shifted electron cyclotron mode interacting with the waveguide mode.

The appreciable microwave gain occurs only near the synchronous region be-

tween the waveguide and the beam modes. However, the bandwidth of a gyro-

tron in a perfectly conducting waveguide is very narrow. In order to

broaden the bandwidth, it is necessary to slow down the waveguide mode by

4 5-7some slow wave structures such as a dielectric load. In this paper,

we will examine the gyrotron in a dielectric loaded waveguide with the

emphasis on increasing the bandwidth of instability.

The stability properties of the slow wave mode (or the intermediate

wavelength mode, see Sec. III) in a rectangular waveguide have been prev-

iously studied, within the context of a fast rotational beam equilibrium.
5

However, in order to determine the optimum operational conditions in present

experiments, it is necessary to investigate the gyrotron in a dielectric

loaded, cylindrical waveguide. The purpose of this paper is to find a

broad range of the optimum physical parameters in a wide band gyrotron

operation, rather than to specialize some particular cases. In the process

of the parametric investigations, we will identify all the unstable modes

and will examine their characteristics by analyzing them individually in

terms of a wide band operation.

The dispersion relation of the cyclotron maser instability is obtained

8-10
by the method of the wave impedance matching, without making use of the

11-13
usual waveguide approximation for the perturbed fields. In this

regard, it is possible to predict not only the instabilities driven by

the coupling of the waveguide-beam modes (the long and intermediate wave-

length modes, see Sec. III), but also the instability driven by the highly

Manuscript submitted December 22, 1980.



localized fields at the beam location (the short wavelength mode, see Sec.

III). Moreover, the influence of the axial momentum spread on the instabil-

ity behavior as well as on the bandwidth of instability is investigated,

assuming that the electron beam has a Lorentzian distribution in the axial

momentum. It is found that the axial momentum spread plays a significant

role in determining the bandwidth of instability.

The dispersion relation for the azimuthally symmetric, transverse elec-

tric (TE) mode is obtained in Sec. II utilizing the method of the wave

impedance matching. In Sec. III, the resulting dispersion relation is

examined and the three unstable modes are identified. We also investigate

these three unstable modes individually in the next three sections, and

the comparison of these modes for the wid- band application with respect

to the axial momentum spread is given in Sec. VII.

Il. DISPERSION RELATION

We consider a cylindrical dielectric loaded gyrotron shown in Fig. 1.

The dielectric material with its dielectric constant e is filled from the

inner radius r - R to the conducting waveguide wall r = R . The beam elec-w c

trons are gyrating with their Larmor radii r about their guiding centers at

R . The electron beam is confined between R+ = R + r and R- =

We employ the cylindrical polar coordinates (r, 9, z) as shown in Fig. 1.

In order to make the problem tractable, we make use of the following

assumptions:

(a) The theoretical analysis is described by the Maxwell-Vlasov equations

for the electric and magnetic fields ( , t), ( , t), and the beam

electron distribution function f ( 0, t). Here and t refer to the

space, the momentum and the time coordinates, respectively. Further, it is

assumed that any quantity ip ( c, t) can be linearized according to

2
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ipC , t) o(r) + il(r) exp [i(kz- tt)], (1)

with its equilibtium part iP and the small perturbed quantity i" We

explicitly assume that the equilibrium is symmetric in e and z, and that

the perturbation is azimuthall.y symmetric (i.e. D / @a = 0) with the

frequency u and the axial wave number k. Moreover, the present analysis

is restricted to the transverse electric (TE) perturbation only (i.e., E =

0).

(b) The electron beam density is assumed to be sufficiently small that the

equilibrium self-field can be neglected. Specifically we assume that

< < 1, (2)

where v = Ne2/mc is Budker's parameter and y mc2 is the electron energy.

Here N is the total number of the electrons per unit axial length, and

(-e) and m are the charge and the rest mass of the electron, respectively.

(c) Consistent with (a), it is assumed that the equilibrium fields are given

by

E = 0, B =(O,0,B), (3)

where B is the constant applied axial magnetic field strength.

(d) We also assume that the beam is very thin, that is

(R -R)/R < < 1, (4)
+. 0

where R +(R) is the outer (inner) boundary of the beam as shown in Fig. 1.

Consistent with Eq. (4) we can approximate

R=R 0°  R_ (5)

(e) The equilibrium distribution function f0, which is a function of the

three invariants of the electron motion,9 11 viz. the total energy ymc2 ,

the axial linear momentum p z, and the canonical angular momentum P , is

4



assumed to be

____ 2 2 2-1(6
4i3ymc2  6 (Y-j) S(PPe) r(Pz- )2 + zA (6)

where , Pz' P8 and A are constants, and wc = eB /mc is the non-relativis-

tic electron cyclotron frequency. Equation (6) describes the monoenergetic

2(jmc2) electron beam with the average axial velocity c8 = z m , the

avergy transverse velocity c$. c(l- z2 - 1/y2) , and the average Larmor

2 2radius r - caL/w . We choose Pe -eBo(R rL2 ) /2c to be negative so
rL We 0hos 0e

that the beam is hollow with its gyro-center at R . Moreover, the electron0

beam has a Lorentzian distribution in the axial momentum. The axial momen-

tum spread is represented by pz A so that A refers to the axial momentum

spread ratio. Compared to the thermal Maxwellian distributon5 , exp

[-(pz- 2 /(2 ,.')], it is found that
z z z

a TH 1.25 A .(7)

In terms of the spread influence, 4% of the Lorentzian spread is approxi-

mately equal to 5% of the thermal spread. Therefore, the Lorentzian spread

slightly overemphasizes the spread effect than the thermal spread ATH.

The process of deriving the dispersion relation is identical to that

of Uhm and Davidson10 with one exception of the important modification of

f with the axial momentum spread [Eq. (6)1. We therefore outline only the
0

essential part, leaving out the details to that paper. The field equation

for the azimuthally symmetric [Eq. (1)] TE perturbation is given by

B _ ckBrl A) - 61-ES

B ic 1 9 (rE (8)
zl w r r (8

Bzl i ( 2 2k2 )E  47r j

3r Wc 8k c al

5



where e. - I for 0<r<R and F. - for R < r < R . The perturbedJ--- w j w- -c

current J , in turn, is given by the moment equation

Jl - e f d3 Pv f1 (9)

where v0  is the azimuthal electron velocity. To complete the analysis,

the perturbed distribution function f is given by the orbit integral

af0
f, ef t dt' ( +I +  x (10)

where prime (') refers to the quantity along the equilibrium orbit X' and

' at time t'. First we note that, outside the beam (i.e. J 
= 0 '

the solution to Eq. (8) is readily obtained. Namely

Cl 1l (p1 r) , O < r < R-

Ee C 2 Jl (plr) + C3 N1 (plr), R+ < r <R ()

CJ4 J 1 (p r)+CN (pr) R < r < R41 £ 5 1-e- c

with the remaining components Bzl and Brl given by Eq. (8). Here

22 2 _22

22 2 22 (12)

and J  and N refer to the first and the second kind of Bessel func-

tion of order Z . The contribution of the electron beam is represented by

the integration of Eq. (8) over the beam region, viz.

6



i 2 + R+BzI(R) - (R) - p R E -dr cTfR J dr
Z1 + 1 WC 1 61c ei 13

Using the thin beam approximation [Eqs. (4)-(5)], we replace the left hand
side of Eq. (13) by the jump condition on B at R , but fully account for

the orbit integral and the source equation [Eqs. (9)-(10)] in calculating

the current contribution on the right hand side of Eq. (13). The appropriate

boundary conditions uniquely determine the coefficients C's in Eq. (11), re-

sulting in the desired dispersion relation. The necessary boundary conditons

are: E (R ) = 0 on the conducting wall, the continuity of Eel (R) and
91 c w

B 1 (R) on the inner radius of the dielectric material, and El (R_)

Eel (R+) = Eel (Ro) and the jump condition on Bzl [Eq. (13)] at

R = R+ = R via the thin beam assumption [Eq. (5)]. The orbit integral

(10) and the subsequent calculations on the current contribution in Eq. (13)

are tedious (we refer the detail to Ref. 10), and it is sufficient to say

that the simple equilibrium fields [Eq. (3)] and the symmetry in 8 and z

greatly simplify the problem. We also add that in evaluating Eq. (10), use

is made of the integral contour consisting of the real axis and the lower

half circle in the complex pz - plane.

It is noteworthy to compare this procedure of matching the boundary

conditons with the waveguide approximation method used elsewhere.
1 1 1 3

It is assumed in the waveguide approximation that the field expression

[Eq. (11)] is given by Jl (pr) throughout the cross section where
2 2 - c2k 2. Here w is the waveguide mode with absence of the

C G G

electron beam. It is obvious that this approximation is valid only when

the eigenfrequency is nearly equal to the free (without the beam) wave-

guide frequency wG In view of the fact that the unstable mode is sup-

7



ported by the beam mode (see Sec. III), the validity of the waveguide

approximation is guaranteed only for the beam-waveguide synchronous region.

It cannot describe, as an extreme counter-example, the short wavelength mode

(see Sec. III and VI) where the unstable mode is not the beam-waveguide

interaction and indeed the field structure [Eq. (11)] is far different from

J (1 r) (see Sec. III). Since, in our approach, the field profile is not

apriori given but is determined as a result of the dispersion relation, it

is applicable for arbitrary region including the short wavelength mode range.

We finally give the resulting dispersion relation for the azimuthally

symmetric TE mode.
2

B = B N (14)
B 2 3 2
D 2y R [ - + i IkIc Bz A /y z]

Here the Doppler-shifted beam mode wB is defined by

W kcS + o/ , (15)
B z c

and the wave admittance8- 10 is given by

BN = 2B1
2

B = -ro J (xo) J (x) B2 - N1 (x) B1 ] (16)

BI = J (yc) ANJ (yw, Xw) - N1 (yc) Ajj (yw' xw)

B2 = Jl (yc) ANN (yw, xw) - N1 (Yc) AJN (yw' X)'

where

ApQ (Yw X)z Yw Po (yw) QI (xw)-X Q (Xw)P (17)w w 0Q (x)(Yw)(7

with P and Q standing for J or N.

Also, 2 R 2 2 2

pc = 2x P2 \R = (18)2 pR ' x2 1

w w 0 0

8



where and p are defined by Eq. (12), and y- = It is

6 
z

2 q2.
understood that when p 2 _q is negative, the Bessel functions J and N be-

come
J (pr) = I (qr)

J 1 (pr) = i 11 (qr) , (19)
2

N (pr) = -2 K (qr) + i I (qr)
0 7T 00

N (pr) - - I (qr) + i Z K1 (qr)

where I and Kz refer to the first and the second kind of modified Bessel

function. We mention here that the denominator of the wave admittance, BD

is directly proportional to the electric field at the beam location

BD 31 (R 0  whereas the numerator, BN measures the degree

of the synchronization between the waveguide frequency and the eigenfrequency.

Especially we note that when v=O (i.e., without the beam), BN = 0 is the

solution of Eq. (14), corresponding to the free waveguide dispersion equa-

tion. Moreover, when Rc = Rw or e = 1, the dispersion relation Eq. (14) is
8

reduced to that for a simple waveguide gyrotron.

In the next section we will analyze the dispersion relation Eq. (14)

both analytically and numerically for a broad range of the system parameters

in the entire spectrum of w and k. Only unstable modes are investigated

for the amplifier application.

III. CHARACTERISTICS OF UNSTABLE MODES

In this section we will derive an approximate dispersion relation for

the unstable modes by making use of the tenuous beam assumption, identify

three unstable modes, and examine the characteristics of each mode by

analyzing this dispersion relation. Also discussed in this section is the

general dependency of the growth rate on the axial momentum spread.

9



Making use of the fact that the applied frequency w is nearly resonant

with the beam mode w (i.e., jw -w I< /# ) in order to be unstable,
B B c

we can Taylor expand the wave admittance B by

B = B (wB) + B' (W B) (20)

where B' stands for (- i/c8 )(PB/ak) at k (w - 1/1)/ca

and

x = w - kc -W W - B (21)

refers to the eigenfrequency shift. Then the dispersion relation (14)

becomes

23 Z ( 2

[B' (wB) X + B(wB)B [X - ijkc z  z -1 2R2 (22)

0

which is cubic in x with the coefficients all known. Only the root with

positive imaginary part (i.e., Xi >0) corresponding to a growing mode, is

selected.

Since the axial momentum spread (A) generally reduces the growth rate,

we first investigate the stability properties for a cold (A=O) beam case.

From the property of a cubic equation, the necessary and the sufficient

condition for the instability (i.e. > 0) is given byS3 L 2 1/li3
B( ) -- B( 2/ (23)B(B 2 2 Bo

9Y(o
with the maximum growth rate found to be

max V a- 2 1/34 i 3 , (24)

when 2?Ro2 B'(wB)

B(wB)= 0 (25)

4 10
i n I Io4



It is interesting to examine the condition for the maximum growth rate

[Eq. (25)] more carefully. From Eq. (14) we note that the optimum condi-

tion (25) can be achieved by following:

(a) BN(B)= 0 ,
(26)

(b) BD(WB) '..

The case (a) corresponds to the synchronous interaction of the eigenmode

with the free waveguide mode (B = 0 is the dispersion relation for theN

free waveguide mode), while the case (b) represents the perturbed electric

field being highly localized at the beam location [i.e. E l(Ro) 0 6(r-R )J.

In the first case, the presence of the electron beam hardly perturbs the

free waveguide fields so that the waveguide-beam mode coupling is most

efficiently achieved. On the other hand, in the second case, the beam

perturbs the waveguide so drastically that all the available charge bunch-

ing force is concentrated at the beam location. It is worthwhile to point

out, as done in Sec. II, that the method of the wave impedance matching is

valid even for the case (b), whereas the waveguide approximation is

obviously inadequate to predict the case (b).

Analytical examinations of the dispersion relation (20) yield important

results. By using small argument expansion when p -2 0 [Eq. (12)]

it can be shown that near the wavenumber k defined by

Wc

k C c (27)c c(l-a )

such that wB(k ) - ckc  the mode is absolutely stable [B(wB) 1/p 2

This is due to the fact that for k = kc (where the phase velocity vph = w/k

is equal to c), the electric field [Eq. (11)] at the beam location Es (R )

is zero. In fact we can show that for, k kc,

I1



t

all the perturbed fields vanish. Since there is no electric field

to derive the instability, the mode is stable. This fact remains

true regardless of the other parameters. This stable mode at k provides aC

distinctive stability boundary between the fast (v > c) and the slow
ph

(vh < c) wave modes. On the other hand, near the wavenumber k = kph c

defined by

WC

ck = c ,(28)

characterized by wB(kE) = c k -, the wave admittance B (w) is a positive

value corresponding to a growing mode [Eq. (23)]. In this regard, there is

no distinctive stability boundary when the mode phase velocity changes from

ph > ph <C .

In Fig. 2 a schematic growth rate (broken line) vs. k is plotted. Also

shown in Fig. 2 are the real frequencies (solid lines) for the beam mode

iB [Eq. (15)], the waveguide mode G the solution of BN = 0, Eq. (14)1, the

free space mode ck, and the free dielectric mode ck/E. The beam mode

intersects with ck and c1/I at kc [Eq. (27)] and kE [Eq. (28)],
c

respectively. The growth rate curve shows that there are two distinctive

regions; the fast wave (w > ck) and the slow wave (W < ck) separated by a

stable band near w = ck (i.e., near k C) as expected. The growth rate for

the slow wave reaches a maximum for k <k reduces somewhat and then increases
c

(Fig. 2), thus exhibiting two maximalone at k < k and the other as k* C

approaches infinity. We identify these three unstable modes as the long

wavelength mode (LWM) for k < k (i.e. v >c), the intermediate wavelength
C ph

mode (IWM) for k <k<ke (i.e. c>v >cp- ) and the short wavelength mode
c c ph(SM)foC > e (~.v < - )

(SWM) for k>k (i e. v < C according to their wavelength magnitudes.
c ph

It is found that while both the LWM and IWM unstable modes may disappear

depending on the dielectric parameters (e, R R ), the SWM is presentw c

12
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regardless of these parameters. Both the LWM and the IWM are originated

from the unstable coupling of the beam mode w with the waveguide mode w

- I On the other hand, the instability of the SWM is driven by the highly

localized electric field near the beam location. In fact the examination

of the wave admittance shows that the appreciable gain for the LWM and the

IWM occurs at BN = 0 [Eq. (26-a)), whereas that for the SWM occurs at

BD - o [Eq. (26-b)]. From a simple waveguide (i.e., without the dielec-
De

tric load, see Sec. VI), we find the SWM is not confined within k > k

but it starts from near k - kc . The presence of the dielectric load,
c

when its parameters are properly adjusted, enhances the IWM unstable

modes at k > k thereby overwhelming the small gain due to the SWM there.1.c

In this regard, the IWM unstable mode is coexisting with the SWM unstable

mode. However, the growth rate due to the SWM at k < k < k is usually
c c

very small compared to that due to the IWM, and we can safely call this mode

pure IUM.

Throughout the remainder of this paper, we assume the following beam

parameters.

SJ. 0.40, Bz = 0.20, v = 0.002 , (29)

corresponding to 60.3 KV of the anode voltage and 6.8 Amp. of the total axial

current. For future reference, we also define

R = 2.017 c/u ,R a 4.197 c/w (30)
0 c cC

It can be shown that R * and R 0 are the optimized beam center and the con-
0 c

111
ducting wall locations when the dielectric is absent. 1,12 With the param- I
eters in Eq. (29), it is found that the optimum c values are \ 5, n-15, and

1 for the LWM, IWM, and SWM, respectively, and the maximum growth rates,

normalized by its real frequency (Xi/ ) are 1 l.8%,".0.8%, and "0.4%

for the LWM, IWM, and SWM, respectively.

14



So far we have discussed three unstable modes for the cold beam

(A=O). The bandwidth, however, is primarily determined by the axial momen-

tum spread. Before we discuss the spread effect for the individual modes

(see next three sections), we will briefly mention the general dependency

of the gain on the spread. From Eq. (22), the axial momentum spread that

absolutely stabilizes the growth is given 
by14

a - xifl o/(jk caz) (31)max Z

Evidently the degree of reduction in the gain due to the spread is the

highest for the SWM, intermediate for the IWM, and the lowest for the LWM.

With parameters in Eq. (29), A is >30%, n,10%, or 12% for the LWM, IWM,• ' max

or SWM, respectively.

In this section we found that there exist three unstable modes for the

azimuthally symmetric, dielectric TE perturbations; the long wavelength mode,

the intermediate wavelength mode and the short wavelength mode characterized

by their wavelength magnitudes. Also we found the different instability

mechanisms for these modes. In the next three sections we will scan the

whole parameter space (e, R , Rc, R ) to obtain the optimum conditions for

the wide bandwidth and examine the dependency of the gain on the axial

momentum spread for these three unstable modes.

In order to avoid confusion, we list frequently quoted names for the

three unstable modes. Both the SWM and the dielectric loaded LWM have not

been previously examined. The simple waveguide (E-l) LWM is often called

as the "Gyro-TWA" and as the "fast wave." The IWM is frequently called

as the "slow wave," which is confusing in view of the presence of the SWM.

The IWM is also called as the "Weibel mode." The SWM is, without any valid

analysis, often called as the "Weibel mode" and as the "whistler mode."

These are tabulated in Table I.

15



Table I - Other terminologies for three modes

LWM IWM SWM

o Fast Wave o Slow Wave o Whistler Mode

o Gyro-TWA o Weibel Mode o Weibel Mode

IV. LONG WAVELENGTH MODE (LWM)

The long wavelength mode (LWM) is a fast wave interaction between the

dielectric waveguide and the beam modes, and is separated from the interme-

diate wavelength mode (IWM) by a stable region near k (see Fig. 2). Unlike
C

the IWM, always mixed with the short wavelength mode (SWM), the LWM unstable

mode has its stability boundary. In Fig. 3 the stability boundaries for the

LWM in the R -R parameter space are presented for several values of thew c

dielectric constant £ . Both the conducting wall radius Rc and the dielec-
0

tric inner radius R are normalized to R [Eq. (30)], which is the optimum
w C

conducting wall radius without the dielectric load. The LWM mode is stable

above the boundary and may be unstable below it. The curves are obtained

for the beam parameters in Eq. (29), assuming zero axial momentum spread

(A=0). Evidently, the thickness of the dielectric material, represented

by the vertical distance from the R = R line to the boundary curve,w c

decreases as 7 increases in order to be unstable. Moreover, we also note

from Fig. 3 that the thick dielectric loading requires reduction in the

conducting wall size. Stability properties are more sensitive to a small

dielectric constant.

16



LWM STABILITY BOUNDARY

STABLE
0.9 -- UNSTABLE (E)

0

0 0.8 -

0.7 (1)

(2)
(3)

0.6 I
0.6 0.7 0.8 0.9 1.0

Rc/Rc o

Fig. 3 - Stability boundary of the long wavelength mode in the Rw -R e space. Both the
inner wall radius (Rw ) and the conducting wall radius (R.) are normalized by R' in Eq. (30).
For given dielectric material (e), the LWM is unstable below the stability boundary.

In Fig. 4, the maximum gain contours for the LWM are presented in the

Rw-RC space for various values of E. Comparing Fig. 4 with Fig. 3, it is

found that the maximum gain occurs at a deep inside the stability boundary

as Rc increases and e decreases. Shown in Fig. 5 are the maximum growth

rates vs. R along its maximum gain contour given in Fig. 4. The possible

maximum gain is a decreasing function of both c and Rc, reaching saturation

at higher E and lower Rc. It is also noted from Figs. 3-5 that both the

instability boundary and the maximum gain curves are insensitive to the

dielectric thickness (R -Rw) for E >10 (also see the discussion in Sec. V).
c- w

17
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The bandwidth of the LWM for a cold beam (A=0) is limited from the

facts that for k k, the transverse fields for 0<r< R vanish (see Sec.

III), and that for some system parameters, the beam mode never synchronizes

the waveguide mode. From the numerical calculation, it is found that the

optimum bandwidth contours in the R -R space are almost identical to those
w c

of the maximum growth rate in Fig. 4. However, the bandwidth increases as

R increases, which is contrast with the R -dependence of the growth rate
c c

(see Fig. 5). We also note that the bandwidth is an increasing function of

up to e=5, beyond which it is actually decreasing as e further increases.

This is due to the difficulty in achieving the beam-waveguide synchroniza-

tion within the LWM range at higher C (see Sec. V). It appears that the

optimum dielectric constant C for the LWM is given by "I/Bz. Since the

electric field tends to concentrate within the dielectric material, the

growth rate and the bandwidth increases as the beam center R approaches0

its physical limit of Rw-rL. This R0 optimization condition restricts the

bandwidth broadening effect of the smaller conducting wall radius. There-

fore, we conclude that the optimum parameters for the wide band operation

of the LWM with a cold beam are given by e-5, R = 0.80 R*, R = 0.62 R*
c C w c

and R= R - rL

The most important parameter to determine the bandwidth is the axial

momentum spread. Although the LWM suffers least from the spread among the

three unstable modes, the stability dependency on the spread changes the

picture of the optimum conditionsfor the wide band operation. The optimum

wall radius Rc increases from R0 [Eq. (30)] to R* [Eq. (30)] as the axial

momentum spread increases. Shown in Fig. 6 are plots of the growth rates

vs. k fore- 1, Rc M 1.008R0 , Ro  0.481 R* (broken lines), and
S0 , c

£-5, Rc M 0.800R0 , Rw - 0.624R0* , Ro 0 .524R; (solid lines) at

19



II

several different values of the momentum spread A. Obviously from Fig. 6,

for a small spread (A ;3%),the bandwidth for-=5 is broader than that for

E: 1. However, in contrast to the broken lines in Fig. 6, the bandwidth for

c= 5 reduces rapidly as the spread increases (also see the discussions in

Sec. VII).

In this section we have performed parametric investigations on the LWM

unstable modes. It is found that for a small spread the dielectric LWM with

e= 5 is suitable for the wide band operation. On the other hand, for a

large spread the simple waveguide (with e =1)is preferable. Moreover, the

beam center location is preferable at near the inner wall of the dielectric

for a small spread, whereas its optimum position is R* [Eq. (30)] for a
0

large spread. We also found that the gain for the LWM with the dielectric

loading is approximately the same as that for the simple waveguide LWM.

LWM ( in %)

?)()(6) 5
O2Rc = 0.800 Reo

Rw= 0.624 Rc°Ro= 0.524 RC°

A, 1.0 8

" _ Rc --- 1.008 Rc °

Ro = 0.481 Rc°

0.0 0.5 1.0

ke /WC
Fig. 6 - Gain curves of the long wavelength mode for several values of the axial momentum

spread. The solid curves are for the optimized dielectric gyrotron, and the broken for the
optimized gyrotron without the dielectric load. The arrow refers to kc [Eq. (27)1, the limit
of the LWM.
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V. INTErIEDIATE WAVELENGTH MODE (IWM)

The intermediate wavelength mode is characterized by the phase
Vhin the range c>vh >cEl/1 or kc c , Eqs. (27)-(28)]. In

2 2
this region we note p1 <0 and p, >0 [Eq. (12)], so that the Bessel

functions with argument X's become the modified Bessel functions according

to Eq. (19). As discussed before, the IWM always exists together with the

short wavelength mode. When the beam mode is considerably out of synchroni-

zation with the waveguide mode, the IWM disappears completely, leaving the

SWM only. In this regard, there is no means to define the stability boundary

for the IWM. It is, however, safe to say that the growth rate contributed

b- the SWM in the range k <k<k is usually negligible in comparison withc c

that by the IWM.

Like the long wavelength mode, the unstable IWM is driven by the coupl-

ing between the beam and the waveguide modes. The growth rate and the band-

width of the IWM are, therefore, optimized when the dispersion curve of the

beam mode w = wB is tangential to that of the dielectric waveguide mode

W = W G (see Fig. 2). The parametric conditions to make the beam mode

graze the dielectric waveguide mode are shown in Fig. 7. The dielectric

constant e [Fig. 7(a)] and the corresponding conductor radius R [Fig. 7(b)]c

versus the wave number k where the grazing takes place are given for several

values of the thickness parameters R /Rc . When the relative thickness of
wc

the dielectric material is small (i.e., R /R -* 1), the beam mode grazes the
w c

waveguide mode at two different wave numbers (k ) at high E. However, for

gg
a thicker dielectric material (i.e., R /R -*. 0), the modes graze each other

w c
at only one wave number k 9for all e. We also note that at 15 N, 16

for $z M 0.2 , the c- curve and the corresponding Rc-curve are almost flat

in the kg space. That is, at this particular e, the beam mode grazes or

nearly grazes the waveguide mode for a broad range of the axial wave number
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in the IWM region. Thus we find that for our beam parameters [Eq. (29)],

the beam-waveguide synchronous region is significantly stretched when

151 16, R/R c = 0.90 \, 0.80, and RI/R* = 0.70 x, 0.50. It is also

obvious from Fig. 7(a) that for a thick (R /R < 0.75) dielectric material

with high dielectric constant (e > 10), the axial grazing wave number kg is

greater than kc, thereby indicating that in these system parameters, the

optimum gain and the bandwidth for the LWM are unattainable. This explains

the insensitivity of the gain and the bandwidth of the LWM for high c

(see Sec. IV).

25
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(0.5)
20 2.0 -

L

S0.0.75

(00-!7o)

i.-,_ //05 M -81 0 ) '
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(0.70M1 , ,Q

0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

Fig. 7 - Conditions for the beam-waveguide mode grazing. (a) The dielectric constants at
which the beam mode grazes the waveguide mode at kg are shown for several values of
Rw-R c . (b) Corresponding conductor radii vs. kg.
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In order to illustrate the effect of the axial momentum spread on the

stability behavior of the IWM, we present the plot of the growth rates vs.

the wave number in Fig. 8. The parameters (E = 15.2, R = 0.630 R 0

R = 0.532 RO, R ° = 0.427 R*) are obtained from the optimization process
w c C

with aid of Fig. 7. Since the electric fields tend to concentrate on the

high edielectric layer, it is obvious that the growth rate increases as

the beam location R approaches to R . In Fig. 8, the growth rate for the
o w

cold beam ( A- 0) increases monotonically increases as k increases from

k = 3.5 w /c (after the IWM maximum) to infinity, obviously indicating

the SWM contribution. However, this SWM influence quickly disappears by

introducing even a very small amount of the axial momentum spread (A > 2%).

IWM

1.5

_- (A% in %) 45 = 15.2

(1) Rc = 0.630 NO°

-- Rw "- 0.532 R©°

1.0 R° = 0.427 Rc
(2)

(3

.5 ( 4)

1.0 2.0 3.0 4.0 5.0

kc/Wc

Fig. 8 - Plots of the growth rates for the optimized intermediate wavelength mode for
several values of the axial momentum.
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As the spread increases, the IWM gain decreases very rapidly and so does the

bandwidth. (Numerical presentations are given in Sec. VII.) As discussed

in Sec. III, the gain is more sensitive to the spread than that for the LWM.

Unlike for the LWM, however, the optimization condition for the IWM does not

change as the spread increases. It is also found that when the spread is

greater than 10%, the gain for the IWM is completely wiped out, which is

contrast comparing with >30% for the LWM.

VI. SHORT WAVELENGTH MODE (SWM)

The short wavelength mode appears when the phase velocity v is less
ph

than c. However, due to the presence of the more dominant intermediate

wavelength mode (see Sec. V), it is, for convenience, defined as the

unstable modes with vph < cC-  (or k > kc) when the dielectric is present.
ph c

Unlike both the long and the intermediate wavelength modes, the SWM is

originated from the acute localization of the electromagnetic fields at the

beam location. In the SWM region the electron beam itself behaves like a

high e dielectric material and absorbs almost all of the fields inside.

As discussed in Secs. III and V, the IWM is more prominent when the dielec-

tric loading is present. Therefore, we will examine the SWM without the

dielectric clad in this section.

It can be shown that for the cold beam (A- 0) in a simple waveguide

without a dielectric, the wave admittance B(wB) in Eq. (14) is always

positive, and decreases to zero as k increases to infinity. According to

the stability condition Eq. (23), the SWM is, therefore, always present

unlike the LWM and the IWM. The gain Xi is a monotonically increasing

function of k with its asymptotic behavior given by Xi M k Furthermore,

the gain is found to be a monotonically decreasing function of the beam
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$r

center R and a monotonically increasing function of the conductor radius

Rc . The present theory, however, breaks down as R approaches zero due to

the assumption Eq. (4).

Figure 9 illustrates the SWM gain versus the axial wave number for

various values of the axial momentum spread. As pointed out in Sec. III,

the SWM is the most sensitive to the spread, completely disappearing when

the spread is greater than 2%. Similarly the bandwidth is rapidly decreasing

as the spread increases.

SWM
2.0 (A in %)

Rc = 1.000 Rco

Ro = 0.384 RcO

0.1.0j

1.0 3.0 5.0 7.0
kc/Wc

Fig. 9 - Plots of the growth rates for the optimized short wavelength mode for
several values of the axial spread.

25



VII. COMPARISON OF THREE MODES

In the previous sections we have examined the three unstable modes

existing in a dielectric loaded gyrotron. In this section we will compare

these modes in terms of the bandwidth and the linear gain as the axial

momentum spread of the beam is varied.

In Fig. 10, the bandwidth and the linear gain for the various modes,

individually optimized are shown as a function of the axial velocity spread

A. Here LWM refer to the LWM without the dielectric shown by the broken

K£
line in Fig. 6; LWM to the LWM with E = 5 dielectric loading shown by the

solid line in Fig. 6; IWM to the IWM with £ = 15.2 in Fig. 8; and SWM to the

SWM with E I in Fig. 9. The bandwidth in Fig. 10 is defined by the full-

width of the real frequency, at which the linear gain drops to exp (- )

of its maximum value, normalized by the mean frequency w. The linear gain

is also normalized by the mean frequency w. It is apparent from Fig. 10 that

for a small spread (A=1%), the bandwidth for the SWM (> 60%) is broadest,

followed by the IWM (V45%), the dielectric LWM6 (-.16), and the simple

LWM1 (v 12%). As the spread increases, the rate of the bandwidth reduction

is the highest for the SWM, followed by the IWM, the dielectric LWMC and

the simple LWMI, which stays almost unchanged. For a large spread (A =8%),

the simple waveguide LWM1 is wider in its bandwidth (, 11% n the dielec-

tric LWMC (^-8%), even wider than the IWM (^. 9%). We note 1- 1 the plot

of the normalized maximum growth rate versus A that the ratios of the linear

1
gain to that of the LWM is given by 0.85, 0.35, and 0.19 for the LWM , IWM,

and SWM, respectively, even for a very small momentum spread (A- 1%).

Moreover, the linear gains for the IWM and SWM reduce very rapidly as the

spread increases. On the other hand the LWM 1 and LWMF show insensitivity

to the spread.
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From Fig. 10, we conclude that, for a broad bandwidth operation, the

SWM is desirable when the spread is less than 1% (with 60% bandwidth), the

IWM for 1% <A< 7% (with 40 t,25% bandwidth), and the LWM I for a 5> 7%

(with 10% bandwidth). If, however, the bandwidth is to be compromised with

the linear gain, at small spread (A< 5%) the IWM is the one to choose, at

moderate spread ( 5% <A<7%) the dielectric LWMe is better, and at large

spread (Ax> 7%) the simple LWM1 is desirable.

60 SWM
LWM 1

2.0-

40 '
13 W

20 LWM-

0a 2 4 6 8 0 2 4 6 8

Fig. 10 - Plots of the bandwidth and the maximum growth rate vs. the axial momentum

spread for the various modes. The LWM 1 and LWM E refer to the long wavelength modes
in the waveguide without the dielectric (broken lines in Fig. 6) and with the dielectric
(solid lines in Fig. 6), respectively. The IWM and SWM represent the intermediate (Fig. 8)
and the short (Fig. 9) wavelength modes, respectively. For the definition of the bandwidth,
see the text.

27



VIII. CONCLUSIONS

We have obtained and examined a linear dispersion relation for the

azimuthally symmetric TE perturbation in a dielectric (e) loaded gyrotron.

It is found that there exist three unstable modes characterized by their

phase velocities vph , the long wavelength mode (LWM, Vph> c), the inter-

mediate wavelength mode (IWM, c>vh> ce ), and the short wavelength mode

(SWM, vph< ce-t). Both the long and intermediate wavelength modes arise

from the beam-waveguide mode coupling, whereas the short wavelength mode

is driven by the highly localized fields at the beam location. The LWM is

separated from the other modes by a stable region near w= ck, and the IWM

appears always together with the SWM.

The optimum conditions on the physical parameters for a wide band

operation are summarized in Table II for each mode. Here R" and R* are
c 0

defined by Eq. (30) and refer to the optimum wall radius and beam center

location, respectively, when the dielectric is absent.

Table II - Optimum parameters for three modes

SPREAD e R /R Rw/R R
___ __ __ ___ _ __ c c w c 0

LWM <5% v5 1.0.8 0.7,O.8 -Rw

5 -30% 1 "\I. 0 R0
0

IWM <10% A45 .0.6 0.7,0.8 -Rw

SWM <2% =1 >>l 0

Preferable modes for a wide band operation in terms of the axial

momentum spread are summarized in Table III. The modes with asterisk (*)

are desired when the high gain is also needed.
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Table III - Preferable mode for wide band operation

SPREAD USE e BANDWIDTH

<1% SWM =1 >60%

IWM "15 >40%

iN7% IWM n15 40-25%

LWM* 5 16-10%

>7% LWM =1 n0%

When high gain is also desired.

The presence of the short wavelength mode and the promising wide band

capability of both the intermediate and short wavelength modes necessitate

more rigorous understanding of the electron gun profile. Also needed are

studies on how to excite these modes without significant energy loss

(e.g., coupler, collector).
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